Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28.379
1.
PLoS One ; 19(5): e0303199, 2024.
Article En | MEDLINE | ID: mdl-38723048

This paper presents an optimized preparation process for external ointment using the Definitive Screening Design (DSD) method. The ointment is a Traditional Chinese Medicine (TCM) formula developed by Professor WYH, a renowned TCM practitioner in Jiangsu Province, China, known for its proven clinical efficacy. In this study, a stepwise regression model was employed to analyze the relationship between key process factors (such as mixing speed and time) and rheological parameters. Machine learning techniques, including Monte Carlo simulation, decision tree analysis, and Gaussian process, were used for parameter optimization. Through rigorous experimentation and verification, we have successfully identified the optimal preparation process for WYH ointment. The optimized parameters included drug ratio of 24.5%, mixing time of 8 min, mixing speed of 1175 rpm, petroleum dosage of 79 g, liquid paraffin dosage of 6.7 g. The final ointment formulation was prepared using method B. This research not only contributes to the optimization of the WYH ointment preparation process but also provides valuable insights and practical guidance for designing the preparation processes of other TCM ointments. This advanced DSD method enhances the screening approach for identifying the best preparation process, thereby improving the scientific rigor and quality of TCM ointment preparation processes.


Machine Learning , Ointments , Rheology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/administration & dosage , Medicine, Chinese Traditional , Drug Compounding/methods , Sodium Dodecyl Sulfate/chemistry , Monte Carlo Method
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731902

Investigation of chiroptical polymers in the solution phase is paramount for designing supramolecular architectures for photonic or biomedical devices. This work is devoted to the case study of poly(propylene oxide) (PPO) optical activity in several solvents: benzonitrile, carbon disulfide, chloroform, ethyl acetate, and p-dioxane. To attain information on the interactions in these systems, rheological testing was undertaken, showing distinct variations of the rheological parameters as a function of the solvent type. These aspects are also reflected in the refractive index dispersive behavior, from which linear and non-linear optical properties are extracted. To determine the circular birefringence and specific rotation of the PPO solutions, the alternative method of the channeled spectra was employed. The spectral data were correlated with the molecular modeling of the PPO structural unit in the selected solvents. Density functional theory (DFT) computational data indicated that the torsional potential energy-related to the O1-C2-C3-O4 dihedral angle from the polymer repeating unit-was hindered in solvation environments characterized by high polarity and the ability to interact via hydrogen bonding. This was in agreement with the optical characterization of the samples, which indicated a lower circular birefringence and specific rotation for the solutions of PPO in ethyl acetate and p-dioxane. Also, the shape of optical rotatory dispersion curves was slightly modified for PPO in these solvents compared with the other ones.


Solvents , Solvents/chemistry , Propylene Glycols/chemistry , Polypropylenes/chemistry , Polymers/chemistry , Models, Molecular , Rotation , Hydrogen Bonding , Rheology
3.
Carbohydr Polym ; 337: 122187, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38710543

The effects of different electron beam irradiation doses (2, 4, 8 KGy) and various types of fatty acids (lauric acid, stearic acid, and oleic acid) on the formation, structure, physicochemical properties, and digestibility of starch-lipid complex were investigated. The complexing index of the complexes was higher than 85 %, indicating that the three fatty acids could easily form complexes with starch. With the increase of electron beam irradiation dose, the complexing index increased first and then decreased. The highest complexing index was lauric acid (97.12 %), stearic acid (96.80 %), and oleic acid (97.51 %) at 2 KGy radiation dose, respectively. Moreover, the microstructure, crystal structure, thermal stability, rheological properties, and starch solubility were analyzed. In vitro digestibility tests showed that adding fatty acids could reduce the content of hydrolyzed starch, among which the resistant starch content of the starch-oleic acid complex was the highest (54.26 %). The lower dose of electron beam irradiation could decrease the digestibility of starch and increase the content of resistant starch.


Electrons , Fatty Acids , Solubility , Starch , Starch/chemistry , Fatty Acids/chemistry , Lauric Acids/chemistry , Rheology , Hydrolysis , Oleic Acid/chemistry , Lipids/chemistry
4.
Anim Sci J ; 95(1): e13950, 2024.
Article En | MEDLINE | ID: mdl-38712489

The utilization of polyphenol-modified starch in ruminants has not undergone extensive exploration. This study aimed to investigate the impact of the complex formed between starch and Melastoma candidum D. Don fruit extract on physicochemical properties, phenol release kinetics in various buffers simulating the gastrointestinal tract, methane production, and post-rumen digestibility. The interaction between starch and M. candidum D. Don fruit extract significantly (p < 0.001) increased resistant starch and particle size diameter. The maximum phenolic release from complex between starch and M. candidum D. Don fruit extract, due to gastrointestinal tract-simulated buffers, ranged from 22.96 to 34.60 mg/100 mg tannic acid equivalent. However, rumen and abomasum-simulated buffers released more phenolic content, whereas the intestine-simulated buffer showed higher antioxidant activity (ferric ion-reducing antioxidant power). Furthermore, complex between starch and M. candidum D. Don fruit extract significantly decreased dry matter rumen digestibility (p < 0.001) and maximum methane gas production (p < 0.001).


Antioxidants , Chemical Phenomena , Digestion , Fermentation , Melastomataceae , Plant Extracts , Rumen , Starch , Rumen/metabolism , Animals , Starch/metabolism , Antioxidants/metabolism , Melastomataceae/chemistry , Melastomataceae/metabolism , Rheology , Methane/metabolism , Fruit/chemistry , In Vitro Techniques , Phenols/metabolism , Phenols/analysis , Particle Size , Polyphenols/metabolism
5.
J Biomed Mater Res B Appl Biomater ; 112(5): e35405, 2024 May.
Article En | MEDLINE | ID: mdl-38701384

The structure and handling properties of a P407 hydrogel-based bone substitute material (BSM) might be affected by different poloxamer P407 and silicon dioxide (SiO2) concentrations. The study aimed to compare the mechanical properties and biological parameters (bone remodeling, BSM degradation) of a hydroxyapatite: silica (HA)-based BSM with various P407 hydrogels in vitro and in an in vivo rat model. Rheological analyses for mechanical properties were performed on one BSM with an SiO2-enriched hydrogel (SPH25) as well on two BSMs with unaltered hydrogels in different gel concentrations (PH25 and PH30). Furthermore, the solubility of all BSMs were tested. In addition, 30 male Wistar rats underwent surgical creation of a well-defined bone defect in the tibia. Defects were filled randomly with PH30 (n = 15) or SPH25 (n = 15). Animals were sacrificed after 12 (n = 5 each), 21 (n = 5 each), and 63 days (n = 5 each). Histological evaluation and histomorphometrical quantification of new bone formation (NB;%), residual BSM (rBSM;%), and soft tissue (ST;%) was conducted. Rheological tests showed an increased viscosity and lower solubility of SPH when compared with the other hydrogels. Histomorphometric analyses in cancellous bone showed a decrease of ST in PH30 (p = .003) and an increase of NB (PH30: p = .001; SPH: p = .014) over time. A comparison of both BSMs revealed no significant differences. The addition of SiO2 to a P407 hydrogel-based hydroxyapatite BSM improves its mechanical stability (viscosity, solubility) while showing similar in vivo healing properties compared to PH30. Additionally, the SiO2-enrichment allows a reduction of poloxamer ratio in the hydrogel without impairing the material properties.


Bone Substitutes , Durapatite , Hydrogels , Poloxamer , Rats, Wistar , Silicon Dioxide , Animals , Male , Poloxamer/chemistry , Poloxamer/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Durapatite/chemistry , Durapatite/pharmacology , Silicon Dioxide/chemistry , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Rats , Materials Testing , Rheology , Tibia/metabolism
6.
Sci Adv ; 10(19): eadl1586, 2024 May 10.
Article En | MEDLINE | ID: mdl-38718128

Viscoelastic transformation of tissue drives aberrant cellular functions and is an early biomarker of disease pathogenesis. Tissues scale a range of viscoelastic moduli, from biofluids to bone. Moreover, viscoelastic behavior is governed by the frequency at which tissue is probed, yielding distinct viscous and elastic responses modulated over a wide frequency band. Existing tools do not quantify wideband viscoelastic spectra in tissues, leaving a vast knowledge gap. We present wideband laser speckle rheological microscopy (WB-SHEAR) that reveals elastic and viscous response over sub-megahertz frequencies previously not investigated in tissue. WB-SHEAR uses an optical, noncontact approach to quantify wideband viscoelastic spectra in specimens spanning a range of moduli from low-viscosity fibrin to highly elastic bone. Via laser scanning, micromechanical imaging is enabled to access wideband viscoelastic spectra in heterogeneous tumor specimens with high spatial resolution (25 micrometers). The ability to interrogate the viscoelastic landscape of diverse biospecimens could transform our understanding of mechanobiological processes in various diseases.


Elasticity , Rheology , Viscosity , Rheology/methods , Humans , Animals , Lasers , Microscopy/methods
7.
ACS Biomater Sci Eng ; 10(5): 3343-3354, 2024 May 13.
Article En | MEDLINE | ID: mdl-38695560

Moldable tissue-sealant hydrogels were developed herein by combining the yield stress fluidity of a Carbomer and in situ cross-linking of 3-arm PEG-thiol (PEG-SH) and 4-arm PEG-acrylate (PEG-AC). The Carbomer was mixed with each PEG oligomer to form two aqueous precursors: Carbomer/PEG-SH and Carbomer/PEG-AC. The two hydrogel precursors exhibited sufficient yield stress (>100 Pa) to prevent dripping from their placement on the tissue surface. Moreover, these hydrogel precursors exhibited rapid restructuring when the shear strain was repeatedly changed. These rheological properties contribute to the moldability of these hydrogel precursors. After mixing these two precursors, they were converted from yield-stress fluids to chemically cross-linked hydrogels, Carbomer/PEG hydrogel, via thiol-Michael addition. The gelation time was 5.0 and 11.2 min at 37 and 25 °C, respectively. In addition, the Carbomer/PEG hydrogels exhibited higher cellular viability than the pure Carbomer. They also showed stable adhesiveness and burst pressure resistance to various tissues, such as the skin, stomach, colon, and cecum of pigs. The hydrogels showed excellent tissue sealing in a cecum ligation and puncture model in mice and improved the survival rate due to their tissue adhesiveness and biocompatibility. The Carbomer/PEG hydrogel is a potential biocompatible tissue sealant that surgeons can mold. It was revealed that the combination of in situ cross-linkable PEG oligomers and yield stress fluid such as Carbomer is effective for developing the moldable tissue sealant without dripping of its hydrogel precursors.


Hydrogels , Polyethylene Glycols , Sulfhydryl Compounds , Hydrogels/chemistry , Hydrogels/pharmacology , Polyethylene Glycols/chemistry , Animals , Mice , Sulfhydryl Compounds/chemistry , Tissue Adhesives/chemistry , Tissue Adhesives/pharmacology , Swine , Cross-Linking Reagents/chemistry , Rheology , Humans , Acrylic Resins
8.
Int J Biol Macromol ; 267(Pt 1): 131418, 2024 May.
Article En | MEDLINE | ID: mdl-38582465

In this work, the effects of low-frequency alternating magnetic fields (LF-AMF) on the physicochemical, conformational, and functional characteristics of myofibrillar protein (MP) after iterative freeze-thaw (FT) cycles were explored. With the increasing LF-AMF treatment time, the solubility, active sulfhydryl groups, surface hydrophobicity, emulsifiability, and emulsion stability of MP after five FT cycles evidently elevated and then declined, and the peak value was obtained at 3 h. Conversely, the moderate LF-AMF treatment time can significantly reduce the average particle size, carbonyl content, and endogenous fluorescence intensity of MP. The rheology results showed that various LF-AMF treatment times would elevate the G' value of MP after iterative FT cycles. The FTIR spectroscopy results suggested that LF-AMF influenced the secondary structure of MP after multiple FT cycles, resulting in a depression in α-helix content and an increment in ß-folding proportion. Moreover, LF-AMF treatment induced the gradually lighter and wider myosin heavy chain bands of MP, implying that LF-AMF accelerated the degradation of macromolecular aggregates. Therefore, the LF-AMF treatment efficaciously ameliorates the structural and functional deterioration of MP after iterative FT cycles and could be used as a potential quality-improving technology in the frozen meat industry.


Freezing , Magnetic Fields , Muscle Proteins , Rheology , Muscle Proteins/chemistry , Myofibrils/chemistry , Solubility , Animals , Chemical Phenomena , Protein Conformation , Hydrophobic and Hydrophilic Interactions
9.
Int J Biol Macromol ; 267(Pt 1): 131439, 2024 May.
Article En | MEDLINE | ID: mdl-38593902

In this study, an edible film was fabricated by incorporating anthocyanin extract from black rice (AEBR) into acetylated cassava starch (ACS)/carboxymethyl-cellulose (CMC) to enhance the shelf life of pumpkin seeds. The effects of AEBR on the rheological properties of film-forming solutions, as well as the structural characterization and physicochemical properties of the film, were evaluated. Rheological properties of solutions revealed that AEBR was evenly dispersed into polymer matrix and bound by hydrogen bonds, as confirmed by Fourier transform infrared spectroscopy analysis. The appropriate AEBR addition could be compatible with polymer matrix and formed a compact film structure, improving the mechanical properties, barrier properties, and opacity. However, with further addition of AEBR, the tensile strength and water vapor permeability decreased and the tight structure was destroyed. After being stored separately under thermal and UV light accelerated conditions for 20 days, the peroxide value and acid value of roasted pumpkin seeds coated with the AEBR film showed a significant reduction. Moreover, the storage stability of AEBR was improved through the embedding of ACS/CMC biopolymers. These results indicated that AEBR film could effectively delay pumpkin seeds oxidation and prolong their shelf life as an antioxidant material.


Anthocyanins , Carboxymethylcellulose Sodium , Cucurbita , Edible Films , Manihot , Oxidation-Reduction , Seeds , Starch , Manihot/chemistry , Anthocyanins/chemistry , Carboxymethylcellulose Sodium/chemistry , Starch/chemistry , Seeds/chemistry , Cucurbita/chemistry , Acetylation , Permeability , Tensile Strength , Food Packaging/methods , Antioxidants/chemistry , Antioxidants/pharmacology , Plant Extracts/chemistry , Rheology , Spectroscopy, Fourier Transform Infrared
10.
Int J Biol Macromol ; 267(Pt 1): 131468, 2024 May.
Article En | MEDLINE | ID: mdl-38599432

In this work, the changes in the composition of the flours and in the morphological, structural, thermal, vibrational, rheological, and functional properties of the isolated lentil starch during the germination process were investigated. The fiber, fat, and ash content of the flours decreased and the protein content increased, while the apparent amylose content of the starch granules remained constant. Using scanning electron microscopy (SEM), the starch granules remained intact during germination, and no enzymatic activity of α- and ß-amylases was observed. X-ray diffraction shows that the starch has nanocrystals with hexagonal structure which predominate over the nanocrystals with orthorhombic structure and are classified as C-type starch. The most important result is that these nanocrystals do not play an important role during germination. As the germination time progresses, differential scanning calorimetry (DSC) shows a decrease in the gelatinization temperature (Tp) of the starch, ranging from 70.34 ± 0.25 °C for the native lentil starch to values of 67.16 ± 0.37 °C for the starch on the fourth day of germination (ILS4), this transition being related to the solvation of the nanocrystals. On the other hand, the pasting profiles show no significant changes during germination, indicating that no significant changes in starch content occur during germination. Starch degradation is essential for the production of malt for fermented beverages. This fact makes sprouted lentils not a candidate for the short-term fermentation required in the beverage industry.


Germination , Lens Plant , Starch , Lens Plant/chemistry , Starch/chemistry , Starch/metabolism , Chemical Phenomena , Amylose/chemistry , Temperature , Rheology
11.
Lasers Med Sci ; 39(1): 112, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38656634

PURPOSE: To measure the dynamic characteristics of the flow field in a complex root canal model activated by two laser-activated irrigation (LAI) modalities at different activation energy outputs: photon-induced photoacoustic streaming (PIPS) and microshort pulse (MSP). METHODS: A phase-locked micro-scale Particle Image Velocimetry (µPIV) system was employed to characterise the temporal variations of LAI-induced velocity fields in the root canal following a single laser pulse. The wall shear stress (WSS) in the lateral root canal was subsequently estimated from the phase-averaged velocity fields. RESULTS: Both PIPS and MSP were able to generate the 'breath mode' of the irrigant current under all tested conditions. The transient irrigation flush in the root canal peaked at speeds close to 6 m/s. However, this intense flushing effect persisted for only about 2000 µs (or 3% of a single laser-pulse activation cycle). For MSP, the maximum WSS magnitude was approximately 3.08 Pa at an activation energy of E = 20 mJ/pulse, rising to 9.01 Pa at E = 50 mJ/pulse. In comparison, PIPS elevated the WSS to 10.63 Pa at E = 20 mJ/pulse. CONCLUSION: Elevating the activation energy can boost the peak flushing velocity and the maximum WSS, thereby enhancing irrigation efficiency. Given the same activation energy, PIPS outperforms MSP. Additionally, increasing the activation frequency may be an effective strategy to improve irrigation performance further.


Rheology , Humans , Dental Pulp Cavity/radiation effects , Therapeutic Irrigation/methods , Therapeutic Irrigation/instrumentation , Lasers , Root Canal Irrigants , Photoacoustic Techniques/methods , Root Canal Preparation/methods , Root Canal Preparation/instrumentation
12.
Ultrason Sonochem ; 105: 106868, 2024 May.
Article En | MEDLINE | ID: mdl-38581798

The use of extracts rich in bioactive compounds is becoming increasingly common in the food, cosmetics, and pharmaceutical industries for the production of functional products. Araticum is a potential fruit to be analyzed due to its content of phenolic compounds, carotenoids and vitamins, with antioxidant properties. Therefore, this study aimed to investigate the effect of ultrasound on total phenolic compounds, total carotenoids, ascorbic acid, color, turbidity and rheology in araticum juice. Response surface methodology based on a central composite design was applied. Araticum juice was subjected to sonication at amplitude levels ranging from 20 to 100 % of the total power (400 W) at a constant frequency of 20 kHz for different durations (2 to 10 min). Morphological analysis was conducted to observe microscopic particles, and viscosity and suitability to rheological models (Newtonian, Power Law, and Herschel-Bulkley) were assessed. The ultrasonic probe extraction method was compared to the control juice. According to the responses, using the desirability function, the optimal conditions for extraction were determined to be low power (low amplitude) applied in a short period of time or low power applied in a prolonged time. These conditions allowed an ultrasonic probe to act on releasing bioactive compounds without degrading them. All three rheological models were suitable, with the Power Law model being the most appropriate, exhibiting non-Newtonian pseudoplastic behavior.


Rheology , Annona/chemistry , Fruit and Vegetable Juices/analysis , Carotenoids/chemistry , Viscosity , Ultrasonic Waves , Sonication , Phenols/chemistry , Ascorbic Acid/chemistry
13.
Zhongguo Zhong Yao Za Zhi ; 49(3): 634-643, 2024 Feb.
Article Zh | MEDLINE | ID: mdl-38621867

This paper aims to study the correlation between the physicochemical properties of raw materials and intermediates and the molding quality and law of traditional Chinese medicine(TCM) gel plaster by using TCM slices and powder as raw materials. 48 TCM compounds are selected as model prescriptions to prepare gel plasters. The rotational rheometer is used to determine the rheological parameters of the plaster, including storage modulus(G'), loss modulus(G″), yield stress(τ), and creep compliance [J(t)]. The molding quality of the prepared TCM gel plaster is evaluated by subjective and objective measures. Clustering and principal component analysis are conducted to evaluate the physical properties of the plaster. By measuring the rheological properties of the plaster, the molding quality of the TCM gel plaster can be predicted, with an accuracy of 83.72% after seven days of modeling and 88.37% after 30 days of modeling. When the parameters such as G' and G″ of the plaster are large, and the [J(t)] is small, the molding quality of the plaster is better. When the plaster coating point is no less than 3, it is difficult to be coated. In addition, when the proportion of metal ions in the prescription is higher, the 30-day forming quality of the plaster is mainly affected, and the viscosity of the plaster is poor. If the prescription contains many acidic chemical components, the 7-day forming quality of the plaster is mainly affected, with many residuals. The results suggest that the rheological properties of the plaster can be used to predict the molding quality of TCM slice and powder gel plaster. It can provide a reference for the development of TCM gel plaster prescriptions.


Medicine, Chinese Traditional , Prescriptions , Powders , Viscosity , Rheology
14.
Food Chem ; 449: 139158, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38608602

This work presents a novel use of fibrous egg white protein (FEWP) in food preservation and nutraceutical applications. In this study, food-grade FEWP was used as an encapsulating material, along with chitosan (CS), to stabilize emulsions. The emulsion system was then used as a delivery system to improve the stability of retinyl acetate (RA). The structural and functional properties, as well as the stability and rheological behavior of the FEWP/CS copolymer, was investigated. The stability of RA-enriched emulsions was also evaluated. FEWP and CS stabilized emulsions exhibited smaller particle size and enhanced stability against different ionic strengths and storage periods. Additionally, RA-encapsulated emulsions stabilized by FEWP:CS (25:1 w/w) effectively inhibited apple browning. This study provides a promising strategy for delivering antioxidant components, highlighting its potential in food preservation and nutraceutical applications.


Diterpenes , Egg White , Emulsions , Retinyl Esters , Vitamin A , Emulsions/chemistry , Diterpenes/chemistry , Retinyl Esters/chemistry , Egg White/chemistry , Vitamin A/chemistry , Particle Size , Food Preservation/methods , Egg Proteins/chemistry , Malus/chemistry , Chitosan/chemistry , Rheology , Chickens
15.
Int J Biol Macromol ; 267(Pt 1): 131196, 2024 May.
Article En | MEDLINE | ID: mdl-38574915

In this study, high internal phase Pickering emulsions (HIPPEs) were stabilized by the complexes of peanut protein isolate (PPI) and cellulose nanocrystals (CNCs) for encapsulation ß-carotene to retard its degradation during processing and storage. CNCs were prepared by H2SO4 hydrolysis (HCNCs), APS oxidation (ACNCs) and TEMPO oxidation (TCNCs), exhibiting needle-like or rod-like structures with nanoscale size and uniformly distributed around the spherical PPI particle, which enhanced the emulsifying capability of PPI. Results of optical micrographs and droplet size measurement showed that Pickering emulsions stabilized by PPI/ACNCs complexes exhibited the most excellent stability after 30 days of storage, which indicated that ACNCs had the most obvious effect to improve emulsifying capability of PPI. HIPPEs encapsulated ß-carotene (ßc-HIPPEs) were stabilized by PPI/ACNCs complexes and showed excellent inverted storage stability. Moreover, ßc-HIPPEs exhibited typical shear thinning behavior investigated by rheological properties analysis. During thermal treatment, ultraviolet radiation and oxidation, the retentions of ß-carotene encapsulated in HIPPEs were improved significantly. This research holds promise in expanding Pickering emulsions stabilized by proteins-polysaccharide particles to delivery systems for hydrophobic bioactive compounds.


Arachis , Cellulose , Emulsions , Nanoparticles , Plant Proteins , beta Carotene , beta Carotene/chemistry , Emulsions/chemistry , Nanoparticles/chemistry , Cellulose/chemistry , Arachis/chemistry , Plant Proteins/chemistry , Rheology , Particle Size , Oxidation-Reduction
16.
Int J Biol Macromol ; 267(Pt 2): 131504, 2024 May.
Article En | MEDLINE | ID: mdl-38604428

In this study, based on response surface optimization of ultrasound pre-treatment conditions for encapsulating lycopene, the corn starch-glycyrrhiza polysaccharide composite (US-CS-GP) was used to prepare a novel lycopene inclusion complex (US-CS-GP-Lyc). Ultrasound treatment (575 W, 25 kHz) at 35 °C for 25 min significantly enhanced the rheological and starch properties of US-CS-GP, facilitating the preparation of US-CS-GP-Lyc with an encapsulation efficiency of 76.12 ±â€¯1.76 %. In addition, the crystalline structure, thermal properties, and microstructure of the obtained lycopene inclusion complex were significantly improved and showed excellent antioxidant activity and storage stability. The US-CS-GP-Lyc exhibited a V-type crystal structure, enhanced lycopene loading capacity, and reduced crystalline regions due to increased amorphous regions, as well as superior thermal properties, including a lower maximum thermal decomposition rate and a higher maximum decomposition temperature. Furthermore, its smooth surface with dense pores provides enhanced space and protection for lycopene loading. Moreover, the US-CS-GP-Lyc displayed the highest DPPH scavenging rate (92.20 %) and enhanced stability under light and prolonged storage. These findings indicate that ultrasonic pretreatment can boost electrostatic forces and hydrogen bonding between corn starch and glycyrrhiza polysaccharide, enhance composite properties, and improve lycopene encapsulation, which may provide a scientific basis for the application of ultrasound technology in the refined processing of starch-polysaccharides composite products.


Lycopene , Polysaccharides , Starch , Lycopene/chemistry , Starch/chemistry , Polysaccharides/chemistry , Zea mays/chemistry , Antioxidants/chemistry , Rheology , Ultrasonic Waves , Carotenoids/chemistry
17.
Int J Biol Macromol ; 267(Pt 2): 131555, 2024 May.
Article En | MEDLINE | ID: mdl-38615858

Known for its antioxidant properties, Araucaria angustifolia bracts extract was encapsulated using hydrodynamic electrospray ionization jetting within calcium alginate cross-linked hydrogel beads with varying contents of modified pinhão starch. The rheological properties of the dispersions and analysis of the physicochemical and digestive properties of encapsulated beads were studied. The results demonstrated that dispersions containing starch exhibited higher viscosity and reduced compliance values, indicating samples with stronger, more compact, and stable structures that are less susceptible to deformation. This was confirmed by the beads rupture strength test. The ATR-FTIR analysis suggest that no new chemical bonds were formed, with encapsulation being responsible only for physical interactions between the functional groups of the polymers used and the active groups of the compounds present in the extract. The thermal stability of starch-containing beads was higher. Total tannins were higher in beads containing starch, with 53.61 %, 56.83 %, and 66.99 % encapsulation yield for samples with 2 %, 4 %, and 6 % starch, respectively, and the remaining antioxidant activity ranged from 96.04 % to 81.08 %. In vitro gastrointestinal digestion simulation indicated that the highest releases occurred in the intestinal phase, ranging from 60.72 % to 63.50 % for the release of total phenolic compounds.


Alginates , Antioxidants , Hydrogels , Starch , Alginates/chemistry , Starch/chemistry , Hydrogels/chemistry , Antioxidants/chemistry , Plant Extracts/chemistry , Microspheres , Rheology , Hydrodynamics , Viscosity
18.
Soft Matter ; 20(19): 3980-3986, 2024 May 15.
Article En | MEDLINE | ID: mdl-38686506

In this paper we investigate the effects of varying cation valency and concentration on the rheology of entangled λDNA solutions. We show that monovalent cations moderately increase the viscoelasticty of the solutions mainly by stabilising linear concatenation of λDNA "monomers" via hybridisation of their sticky ends. On the contrary, divalent cations have a far more complex and dramatic effect on the rheology of the solution and we observe evidence of inter-molecular DNA-DNA bridging by Mg2+. We argue that these results may be interesting in the context of dense solutions of single and double stranded DNA, e.g. in vivo or in biotechnology applications such as DNA origami and DNA hydrogels.


Cations, Divalent , DNA , Rheology , DNA/chemistry , Cations, Divalent/chemistry , Cations, Monovalent/chemistry , Viscosity , Magnesium/chemistry
19.
Sensors (Basel) ; 24(7)2024 Mar 22.
Article En | MEDLINE | ID: mdl-38610233

Increased incidence of traumatic brain injury (TBI) imposes a growing need to understand the pathology of brain trauma. A correlation between the incidence of multiple brain traumas and rates of behavioural and cognitive deficiencies has been identified amongst people that experienced multiple TBI events. Mechanically, repetitive TBIs may affect brain tissue in a similar way to cyclic loading. Hence, the potential susceptibility of brain tissue to mechanical fatigue is of interest. Although temporal changes in ovine brain tissue viscoelasticity and biological fatigue of other tissues such as tendons and arteries have been investigated, no methodology currently exists to cyclically load ex vivo brain tissue. A novel rheology-based approach found a consistent, initial stiffening response of the brain tissue before a notable softening when subjected to a subsequential cyclic rotational shear. History dependence of the mechanical properties of brain tissue indicates susceptibility to mechanical fatigue. Results from this investigation increase understanding of the fatigue properties of brain tissue and could be used to strengthen therapy and prevention of TBI, or computational models of repetitive head injuries.


Brain Injuries, Traumatic , Vibration , Sheep , Animals , Humans , Physical Therapy Modalities , Brain , Rheology
20.
Biofabrication ; 16(3)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38604157

Scaffolds play a pivotal role in tissue engineering and serve as vital biological substitutes, providing structural support for cell adhesion and subsequent tissue development. An ideal scaffold must possess mechanical properties suitable for tissue function and exhibit biodegradability. Although synthetic polymer scaffolds offer high rigidity and elasticity owing to their reactive side groups, which facilitate tailored mechanical and rheological properties, they may lack biological cues and cause persistent side effects during degradation. To address these challenges, natural polymers have garnered attention owing to their inherent bioactivity and biocompatibility. However, natural polymers such as silk fibroin (SF) and tyramine-modified alginate (AT) have limitations, including uncontrolled mechanical properties and weak structural integrity. In this study, we developed a blend of SF and AT as a printable biomaterial for extrusion-based 3D printing. Using photocrosslinkable SF/AT inks facilitated the fabrication of complex scaffolds with high printability, thereby enhancing their structural stability. The incorporation of silver nitrate facilitated the tunability of mechanical and rheological behaviors. SF/AT scaffolds with varying stiffness in the physiologically relevant range for soft tissues (51-246 kPa) exhibited excellent biocompatibility, indicating their promising potential for diverse applications in tissue engineering.


Alginates , Fibroins , Printing, Three-Dimensional , Silver Nitrate , Tissue Scaffolds , Fibroins/chemistry , Alginates/chemistry , Tissue Scaffolds/chemistry , Silver Nitrate/chemistry , Animals , Cross-Linking Reagents/chemistry , Tissue Engineering , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Rheology , Humans , Mice , Photochemical Processes , Tyramine/chemistry
...